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Abstract

Reconfigurable hardware has been used in various application domains for improved 

performance, ease of implementation, and application prototyping. One domain that would 

greatly benefit from these advantages is augmented reality, which is the combination of 

both computer generated graphics and a view of the physical world using a head mounted 

display. Outdoor augmented reality systems such as Tinmith, developed at the University of 

South Australia, use the operator’s hands to interact with computer generated objects. 

Currently the ARToolkit software library is used to find the location of the user’s thumbs 

relative to a head mounted camera. A computer generated cursor is then overlaid on the 

user’s thumbs which is used for controlling menu options and object manipulations. 

The existing tracking software uses complex image processing algorithms to calculate 

the location of fiducial markers with six degrees of freedom. The overhead of these 

algorithms is a burden to Tinmith’s limited mobile computer resources. An alternative 

solution is to offload the tracking process to dedicated hardware that operates independently 

of the rest of the system. Application specific integrated circuits are a well known category 

of customised hardware and could be used to provide algorithmic speedup and lower power 

consumption. However they are not always desirable as they can be very costly for short 

production runs, require large amounts of engineering expertise to design, can take many 

months to design and verify, and can not be modified once fabricated. Another type of 

hardware available is a field programmable gate array, which still provides similar benefits 

but may be re-programmed through software. It was determined that a field programmable 

gate array is a more flexible and suitable solution for this application, where an iterative 

design process during implementation of a vision tracking algorithm is required. This has 

also allowed us to experiment with a number of different algorithms and assess their 

performance in different environmental conditions. 

When Tinmith generates the cursors overlay it requires 2D coordinates from the vision 

tracker to render the cursor in the correct location. A problem with ARToolkit is the black 

and white markers used do not work well outdoors particularly when in direct sunlight. 

Instead of using complex template matching techniques, I propose to use simple blob 

tracking to help overcome the above limitations. A common approach to blob tracking is to 

use a uniquely coloured marker and extract its location from an image. Statistical filters 

such as mean, median or mode can be used to find the centre of mass providing the required 

X and Y coordinates. To allow the new tracker to work in a wide range of lighting 
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conditions, the segmentation process can be adapted to use a different colour model other 

than RGB. Models such as YCrCb, YIQ or YUV separate out one channel which is 

dedicated to processing luminance (brightness) information. 

This dissertation describes in detail the technical processes and steps used for the 

implementation of such an algorithm for the implementation on an FPGA. It presents the 

research completed, provides design details and documentation of each of the components 

developed as well as a performance evaluation performed on the Tinmith wearable 

backpack computer. 
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1 Introduction 
Wearable computing is a relatively new research area and as computers have become 

more powerful and reduced in size, wearable computing has become technologically viable 

and more socially acceptable. A wearable computer is a self powered computing device that 

can be worn on the body without requiring the hands to carry it and can be used while 

performing other tasks [32]. 

Another closely associated research area is augmented reality (AR). AR is the process of 

overlaying computer generated images on to the physical world. This allows the user to 

view both the physical world and the computer generated world at the same time [1]. One 

method of presenting AR to the user is with an optical Head Mounted Display (HMD) (as 

depicted in Figure 1). Another technique that may be used is video overlay, where a video 

camera is used to capture the physical world and a computer is used to render the 

augmented overlay, with the two combined and then rendered on to a HMD (as shown in 

Figure 2). 

The aim of the research presented in this thesis has been to explore the feasibility of 

developing a hardware based hand tracking system which will be used as an input device to 

the Tinmith AR modelling system which allows creation and editing of 3D geometry 

outdoors [31]. The Tinmith AR system was developed at UniSA by Piekarski et al. [33] 

consists of a mobile backpack computer and head mounted display, as depicted in Figure 3. 

Figure 1 - Augmented reality using optical see through combination 
(Image courtesy of Wayne Piekarski – University of South Australia) 
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To interact with the Tinmith modelling software, the user wears a set of gloves with 

metallic contacts that controls a custom user interface. Attached to each glove is a unique 

fiducial marker, and through a process known as pattern matching, the position of the hands 

relative to the head can be calculated. A user can control interactions by touching their 

fingers to their thumb, and this performs a discrete operation similar to a keyboard or mouse 

click. However, the pattern matching algorithms currently used by Tinmith,(as well as other 

Figure 2 - Augmented reality using video see-through combination 
(Image courtesy of Wayne Piekarski – University of South Australia) 

Figure 3 - The Tinmith 2004 wearable backpack AR system 
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vision tracking systems) are computationally complex and require a high end 

microprocessor to operate. With high end microprocessors consuming large amounts of 

power, the operation is limited to a heavy laptop computer with large batteries. Since 

Tinmith is designed to be carried by a user outdoors, reducing the size and weight of the 

hardware is very desirable. 

The existing Tinmith backpack system (like many others which support similar tasks) 

uses a laptop computer to generate 3D computer graphics, track the location of fiducial 

markers, capture a video stream, and combine the resulting generated environment and 

video stream for an output to the HMD. In an effort to minimise the laptops usage I have 

developed a customised hardware device to perform the tracking. This allows us to use a 

smaller and more efficient laptop and may one day allow us to remove it altogether. 

Developing a custom hardware solution for tracking will reduce power consumption by 

reducing the processor size required on Tinmith’s laptop and allow the use of smaller 

wearable computers, while still retaining similar if not better tracking quality. However, the 

development of a custom hardware solution is very expensive and requires teams of 

experienced hardware designers to implement. An alternative to a custom hardware solution 

is the use of a field programmable gate array (FPGA). An FPGA is a hardware device that 

can have its architecture configured by the use of software to suit the application at hand. 

The advantage of an FPGA is they are small and can be low powered devices that can be 

easily re-programmed to iteratively refine the implementation.  

The aim of this research has been to develop an FPGA based hardware hand tracking 

system that can be easily integrated into the Tinmith augmented reality system. This is 

useful as it takes one of the most computationally complex tasks away from the general 

purpose laptop processor, thus reducing the overall power consumption. This results in the 

ability to transfer Tinmith to a more portable computing platform that is smaller and lighter, 

such as a hand held computer. 

The objective has been to supply a small physical hardware device that can be easily 

mounted on the backpack and interfaced to the Tinmith software. The hardware device 

consists of an FPGA mounted onto a RC200 supplied by Celoxica [6], a commercial 

supplier of reconfigurable computers. Connected to the FPGA is a video camera that 

provides images of the gloves to be tracked, and a serial cable that is used to transmit 
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tracking information to Tinmith. The FPGA is configured with a custom designed hardware 

circuit that performs the hand tracking algorithm and transmits the results via the serial port. 

After having outlined the problem in this chapter, Chapter 2 introduces FPGAs and the 

current stare of the research domain. This includes a summary of the design and architecture 

of FPGAs followed by programming languages and previous applications developed. The 

next section of this chapter presents a definition of augmented reality and the associated 

tracking techniques used within the field. It examines the advantages and disadvantages of 

the current approaches to tracking and why these are not suited to hardware implementation. 

The next sub section presents the main techniques used within the vision tracking research 

domain as well as a summary of applications. Finally a discussion of alternate colour 

models and how they might be used to improve the previously described segmentation 

process.

Chapter 3 explains the reasoning behind each of the design decisions made. This 

includes a description of the algorithms considered for the tracking process, with a summary 

of the advantages and disadvantages of the mean, median and mode statistical functions. 

This is followed by a justification for the mean function in the final implementation. Next, 

the design of the tracking marker properties such as size, shape and surface are considered. 

Chapter 4 explains the implementation phase, which includes the platform and language 

selection used followed by a detailed description of my software architecture. The 

architecture section explains my unique design used for an application designed on an 

FPGA. The four main process flows are explained describing the parallelism which is 

achieved in the final implementation. 

Chapter 5 presents the results for a variety of different conditions. A range of different 

coloured markers were tested to evaluate their performance and measure robustness. This 

also includes the methodology I used for the tuning each of the different coloured markers. 

Finally, Chapter 6 concludes this thesis with a summary of each section's findings, an 

overview of the resulting tracking solution, and a description of the contributions made. 

This chapter also summarises the significance of this work and a proposal for future work. 

During the research and development stages I have published a number of fully refereed 

international conference papers contributing to the augmenter reality and user interface 

research areas[33, 34, 44]. 
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The contributions I have made can be summarised as the following: 

Chosen suitable vision algorithm 

Used YCrCb colour space 

Implemented a working version of the tracker on the RC200 FPGA Platform. 

Integrated with the Tinmith system 

Improved tracking performance and robustness compared to ARToolkit 

Developed a low powered stand alone tracking solution 

Performed testing outdoors to find superior colours and measure accuracy of 

operation
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2 Background 
This chapter introduces four research areas which are relevant to this thesis: 

reconfigurable computing, augmented reality, vision tracking and colour models. First I 

begin by defining field programmable gate arrays and explain what a reconfigurable 

computer is, common architecture designs, specific programming languages used, and 

previous research in the field. The next section defines AR and provides a general summary 

of the research area. The following section introduces tracking techniques as well as some 

existing applications which have been developed. After these technologies have been 

explained I summarise the common vision tracking techniques currently used and how 

alternate colour models can be can be incorporated with existing vision tracking methods. 

2.1 Field Programmable Gate Arrays 

Hardware solutions have been a used widely for a variety of applications for many years. 

General purpose computers do not always provide the best software solution; some tasks 

can be performed in dedicated hardware with improved performance. One of the biggest 

advantages offered by dedicated hardware is its parallel processing capability. Algorithms 

can often be modified to operate in parallel modules which can greatly increase their 

execution speed. This is often the case with real time applications where algorithmic speed-

ups can be achieved. Application Specific Integrated Circuits (ASIC) have been 

traditionally used for hardware solutions designed for a specific application. However 

ASICs are not desirable in all situations as they can be very costly for short production runs, 

require large amounts of engineering expertise to design, can take many months to design 

and verify, and can not be modified once fabricated [42]. An alternative to an ASIC that 

does not have these drawbacks but retains a similar algorithmic speedup is a field 

programmable gate array (FPGA). This makes FPGAs an appealing option for many 

applications, particularly where an iterative design process is desirable. 

A reconfigurable computer (RC) combines the use of an FPGA and a standard 

microprocessor. RCs are available with many features such as onboard RAM, smart cards, 

network interfaces, video and audio, and external communications ports, and all connected 

to an FPGA device. Celoxica [6] produce a range of different prototyping platforms, and 

these boards are well suited to applications where fast prototyping is a required by 

programmers with minimal hardware design experience.  
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The biggest limitations of FPGAs are their inability to implement floating point numbers 

and division. In the past when the size of FPGAs was much smaller, both floating point and 

division were avoided altogether but as FPGAs have become denser it is now becoming 

possible. Reconfigurable hardware is frequently used together with general purpose 

processors and areas of an application which do not perform well on reconfigurable 

hardware are executed on a host processor. 

2.1.1 Architecture 

This section explores common architecture designs of FPGAs. They consist of three 

main components [14] combinational logic blocks (CLB) also called Logic Blocks (LB), 

programmable connections and input output (I/O) blocks, as shown in Figure 4. There has 

been a great deal of research on the design of the computational elements built into an 

FPGA, and it has been well established that the best functional block design for FPGAs 

used for random digital logic is an N-input lookup table (LUT) [10]. A typical CLB has one 

or more 4 input LUTs, D flip-flops, and fast carry logic, and any general logic function can 

be programmed into LUTs. FPGAs have many CLBs which are inter-connected through 

programmable connections, and involves complex routing algorithms. Finally, I/O blocks 

give us access to external pins and are used for bus communications and connecting to other 

processors, sensors, and other ASICs. 

Figure 4 - High level architecture diagram of a general FPGA demonstrating I/O blocks, 
CLBs and programmable routing connections 
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The CLBs of an FPGA vary in complexity from simple three input blocks to 4 bit ALUs; 

this complexity is referred to as the CLB granularity. An example of a very-fine grained 

logic block implementation is the Xilinx [52] 6200 series FPGAs which are capable of 

performing any two-input function. This type of block is well suited to bit manipulation 

tasks but is very inefficient for multipliers. Medium-grained logical blocks are capable of 

performing multiplication more efficiently, have greater numbers of inputs, and can be used 

more efficiently for a wider variety of operations. Finally coarse-grained architectures are 

well suited to word-width datapaths and domain specific applications. Unfortunately, when 

performing one bit operations the course grained architecture will waste more area and 

suffer a slower speed. 

Programmable connection blocks are used to connect the CLBs and I/O pins on an 

FPGA. There are many different correct ways in which connection blocks can be configured 

to provide a working solution. Usually this process is done by the automated routing 

process which needs to consider the most efficient way the connections can be made so the 

application designer does not consider how the connections are made. 

The routing connections are usually laid out in a two dimensional fashion as depicted in 

Figure 5. Optimal two dimensional designs are particularly hard to calculate as there are a 

large number of possibilities for the placement and routing software to calculate. FPGA 

routing is commonly conceptualised as a graph with cost associated with the different 

routing paths which are chosen and used to indicate the usage of the device. One way of 

simplifying the problem is to consider the routing as a one dimensional array as 

demonstrated by [19] where 1D connections are made, also depicted in Figure 5. This 

unfortunately can lead to using all the available connections before the circuit is complete, 

where a two dimensional approach would have been able to connect the blocks more 

efficiently. Other systems use combinations of both axes (such as Ebeling et al. [15]) who 

use a technique where the majority of word length connections are made along the 

horizontal axis while other interconnections are made on the vertical axis to provide a more 

optimal solution. Another interesting approach was presented by Tessier [47] who proposed 

using an A* search instead of an exhaustive depth first search to find an optimal solution. 

They have shown their system can reduce routing runtime substantially, with minimum 

track counts in most cases. 
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2.1.2 Programming Languages 

Hardware Description Languages (HDL) have been traditionally used to program 

FPGAs. The most commonly known languages are Very High Speed Integrated Circuits 

Description Language (VHDL) and Verilog. Recently there has been the development of 

new HDLs based on subsets of common programming languages such as C and Java. Some 

examples of these are Handel-C [6], System-C [4] and Join Java [20]. This section of the 

report looks at some of the advantages and disadvantages of each of these options. 

VHDL is one of the most well known hardware description languages, and was 

originally developed by the US Department of Defence to documenting electronic systems. 

Soon VHDL became an IEEE specification standard used to describe and simulate chip 

designs before fabrication. VHDL has been a popular language used for describing FPGA 

designs since Diamond et al. [12] and Hossack et al. [22] proposed the use of VHDL for 

FPGA design.

Verilog is a traditional HDL first designed by Phil Moorby [49] in 1985 and extended 

substantially in 1987. One of the most appealing features was the XL-Algorithm an efficient 

method of doing fast and efficient gate level simulation. Synopsys developed the first logic 

synthesizer which used Verilog as an input language, and designs may be represented as a 

netlist (describing the routings) and modelled behaviourally and translated into gates 

through Synopsys. At this time one of the biggest uses for Verilog was for sign off 

certification by ASIC vendors, and it was not until later that authors Gannot and Ligthart 

[18] proposed the use of Verilog for FPGA design. Although this is an abstraction from the 

gate level, Verilog is considered a low level language by today’s standards, especially when 

comparing it to languages such as Handel-C. 

Figure 5 - (Left) A two dimensional routing grid, (Right) A one dimensional routing grid 
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Celoxica [6] have commercialised Handel-C a HDL customised form hardware 

development based on the ANSI-C specification. The advantage with Handel-C compared 

to traditional HDLs is the ability for software engineers to use it with minimal hardware 

knowledge. A suitable analogy would be comparing Handel-C to Java and VHDL to 

assembly programming, solutions can be developed rapidly but they may not be optimal in 

terms of area use in the FPGA. However as fabrication technologies have advanced and 

more dense FPGAs are available it can be argued that space is no longer a concern and the 

time saved makes Handel-C an excellent development option. 

SA-C [14] is another C based programming language designed as a high level language 

which is used to generate hardware logic. It has been designed to develop loop level and 

instruction level parallelism. There are three main differences between SA-C and ANSI-C. 

SA-C includes data-bit precision exploiting the FPGAs ability to have arbitrary length 

precision. It includes extensions to C supporting parallel looping, and it removes pointers 

and recursion. Parallelism of loops is achieved by unrolling loops and allocating separate 

logic for each iteration of a loop. This technique is quite powerful but also uses large 

amounts of the FPGAs area and can not always be used depending on the algorithm design. 

Another interesting contribution to FPGA programming languages is Join Java [20]. It 

provides an interface based on standard Java classes to the software side of a design. With 

the growing popularity of Java this allows a larger audience to be able to write hardware 

related code. The compiler is capable of parsing a restricted subset [21] of Java code which 

generates VHDL, which can then compiled and synthesised using other tools. 

2.1.3 Previous FPGA Applications 

Reconfigurable computers have been used for many different applications, in this section 

I will present a brief summary of the most prominent applications. This will include 

research prototype applications and those that are commercially available. 

There are many implementations used for specific electronic tasks which I have 

classified under signal processing. These may not strictly be applications in a software sense 

but nonetheless deserve a mention. One example is where an FPGA was used to provide a 

system bus between an array of microcontrollers [28]. The authors improved performance 

compared to using microcontrollers for the bus architecture and also found the design time 

was reduced. Cheung et al. [7] used an FPGA for processing audio signals providing digital 
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to analogue conversion at 96 kHz in a 24 bit configuration, operating at a high quality level 

supporting CD and DVD audio. 

Drapier et al. [14] demonstrated how the use of SA-C can be used to quickly develop 

image processing applications. They compared the performance of a Xilinx XV2000E and a 

Pentium III 800MHz whilst performing common image processing functions such as scalar 

addition, Prewitt, Canny, Wavelet, Dilates and Probing filtering algorithms. They measured 

performance increases between 10 and 800 times depending on the complexity of the task. 

Computers may have become faster since this was published in 2002 but they also stated 

FPGAs also follow Moore’s law the same as general purpose microprocessors. 

The use of FPGAs in image processing has even been used for processing in space [11]. 

Dawood et al. discuss natural disaster monitoring and detection using an FPGA from space 

where issues such as radiation, payload and performance are all considerations. They 

discuss the common image processing tasks with implementation details of a Gaussian and 

convolution filters for their system. 

Another fruitful area of research is bio-technology and recently studies have been made 

on the feasibility and benefits FPGAs can provide. Gene sequence searching involves 

databases with millions of elements for matching and partially matching patterns. 

Puttegowda et al. [40] presented a system using the Smith-Waterman algorithm 

implemented using a number of different architectures. Their design included the use of 

runtime reconfiguration which increased their final performance of up to a trillion cell 

updates per second providing an order of magnitude improvement when compared to 

commercially available systems.  

In the wearable computing and AR domains, the use of FPGAs is still quite rare. This is 

perhaps due to the extra complexity of implementing hardware in VHDL or Verilog rather 

than software. Plessel et al. [38] described a wearable system that performs simple tasks 

such as audio and video decoding through the use of reconfigurable modules located on an 

FPGA. As particular applications are required, the FPGA loads the appropriate hardware 

module and performs the task in hardware. Luk et al [26, 27] used a reconfigurable 

computer to support basic functions for AR applications: video mixing, image extraction 

and object tracking. The image extraction and object tracking stages in this system were 

performed using a fixed position camera, which significantly reduces the difficultly in 

performing these tasks. Matsushita et al [29] described ID Cam, which uses custom 
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hardware and high speed cameras to extract identification codes from flashing beacons in a 

scene. The camera contained custom silicon to perform most of the high speed extraction, 

and an FPGA was used to process the final result. 

As the size available on FPGAs is increasing at such a fast rate, as per Moore’s law, an 

increasing number of reconfigurable applications are being developed. Wigley et al. [51] 

proposed the first operating system designed for a reconfigurable computer used to manage 

multiple applications. They have considered the essential components of a traditional 

operating system: loader, scheduler, virtual memory, cache management, inter-process 

communications, and carefully considered how they can be adapted to a reconfigurable 

computer.  

FPGAs have also been used to show performance increases in areas of cryptography. 

Data Encryption Standard (DES) has been used for over 25 years and is still considered a 

highly secure encryption standard. It effectively uses one 56bit key for both encryption and 

decryption. Cheung et al. [8] assessed the feasibility of using a CPLD device to increase the 

performance of the DES algorithm. They state there are 16 logical rounds in the DES 

algorithm that can be performed in one logical component to perform the entire DES 

algorithm, which is well suited to hardware implementation. Finally, Bednara et al. [3] 

demonstrated the benefits FPGAs provide regarding field multiplication specifically for 

performing elliptical curve cryptography. 

2.1.4 FPGA Summary 

FPGAs are a growing area of research and recently as it is becoming more well known, 

applications are being developed frequently providing accelerated application execution 

times and performance. FPGAs provides benefits compared to traditional ASICs which 

were limited to an elite group of hardware designers. With the development of C and Java 

based languages, reconfigurable computers can now be used by computer programmers 

with little or no hardware experience. I have presented here an introduction to 

reconfigurable computers and the current state of the research based on some of the more 

prominent contributions as an effort to better understand the field. It is clear that further 

research needs to be done in order the fully exploit the benefits reconfigurable computers 

have to offer. 
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2.2 Augmented Reality 

AR is the process of combining computer generated graphics registered with a real world 

view [1]. The concept of computer generating artificial stimulus was first proposed by Ivan 

Sutherland [45] in 1965 with his seminal paper ‘The Ultimate Display’. He proposed the 

concept could be used to present graphical information which does not necessarily follow 

the laws of physical reality and one could ‘See through matter’ using this technique. Soon 

after in 1968 Sutherland [46] developed the first optical Head Mounted Display (HMD) 

which was capable of projecting computer generated images over the real world as depicted 

in Figure 6. 

Another similar technology is Virtual Reality (VR) shown in Figure 7, first coined by 

Jaron Lanier, whose research explored the use of entirely virtual worlds with more that one 

person interacting at one time in them. Both VR and AR use hardware trackers to record a 

user’s motion. Tracking the location of the users head position is used to render computer 

graphics that are aligned correctly with the real world.  

Other parts of the body can also be tracked and used for controlling the computer 

generated output. The Tinmith backpack computer uses the user’s thumbs to control menus 

Figure 6 - Augmented reality demonstrating a virtual table and chairs anchored relative to the 
physical word view

(Image courtesy of Wayne Piekarski – University of South Australia) 
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and perform manipulations of 3D objects [37]. There are many different techniques used for 

tracking. A summary of the different types include mechanical, accelerometers, gyroscopes, 

ultrasonic, passive magnetic, active magnetic, Global Positioning System (GPS), optical and 

vision based tracking. Previously Piekarski [32] found that vision based systems are well 

suited to the hand tracking problem. The problem is particularly difficult when working 

outdoors with known problems such as power consumption, size, weight, and support 

infrastructure. 

2.2.1 Tracking Techniques 

As mentioned previously tracking allows us to register the computer generated 

environment with the real world view. There are a many different types of tracking systems 

available and in this section I summarise the available techniques. 

Sutherland developed the first mechanical tracker as part of his initial work in [46]. The 

tracker consisted of a mechanical arm with one end fixed to the ceiling and the other to the 

user’s head. Through the use of sensors at the joints in the mechanical arm it is possible to 

calculate the location and orientation of the users head. This provides very accurate tracking 

of location and orientation but is limited to a fixed area. It is also heavy and uncomfortable 

for the user. 

Figure 7 – Example of a virtual reality world 
 (Image courtesy of Ben Avery – University of South Australia) 
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Polhemus [39], a well known manufacturer of magnetic trackers, produce a range of 

tracking systems based on active magnetic fields. These systems transmit a magnetic field 

from a base station, which is constructed of three coils which sequentially pulse a magnetic 

field. The strength and the orientation of the field is measured by sensors placed on the 

objects to be tracked. These types of sensors provide both location and orientation with 

excelent accuracy. One of the disadvantages with active magnetic trackers is they only 

operate over short distances which limits their flexibility. 

Accelerometers are designed to measure linear accelerations and are completely 

sourceless. They work by measuring small capacitive differences of a comb drive as 

movement occurs. A comb drive is a Microelectromechanical system (MEMS) [43] 

consisting of two plates with which look like a hair comb attached to springs. To achieve tilt 

sensing three of these are arranged along the X, Y and Z axis so they can measure Earth’s 

gravity vector. 

Gyroscopes measure rotational forces and provide orientation through integration. 

Traditional gyroscopes were constructed using a wheel which spins around an axis. As 

motion occurs the forces perpendicular to the axis can be measured. Recently the 

development of MEMS based gyroscopes has reduced their size significantly.

Figure 8 - Inertia Cube 2 hybrid tracker 
(Image courtesy of Wayne Piekarski – University of South Australia) 
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Sutherland [46] also developed an ultrasonic based tracker that was not tethered, it 

worked by sending pulses of ultra sonic sounds and measured the time taken to reach 

sensors on the ceiling. Although this tracker provided a position the orientation is more 

difficult to obtain. Foxlin et al. [17] discussed that in the Constellation tracking system, the 

orientation values are combined with accelerometers and gyroscopes using a Kalman filter 

to achieve smooth the output.

There are a number of hybrid technologies which combine some of the above tracking 

techniques to provide more robust tracking solutions. Intersense [23] provide a tracking 

solution which uses accelerometers, magnetic sensors and gyroscopes all together. The 

Intersense Inertia Cube 2 uses a combination of nine sensors in total, and combines the 

tracking information of all of these sensors through a Kalman filtering algorithm which 

corrects accumulated errors and smooths outputs. 

2.2.2 Vision Tracking 

There has been much previous research in the vision tracking domain and in this section 

I will explain common vision tracking techniques and present examples of each of these. A 

common approach to vision tracking uses a camera to provide a stream of digital or 

analogue images which are analysed for particular characteristics.

Figure 9 - ARToolkit marker with computer generated graphics overlayed 
(Image courtesy of Mark Billinghurst – University of Washington) 
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Since this thesis is about tracking the location of a user’s thumbs in real-time, this 

section focuses on techniques which can be performed without excessively slowing the 

speed of images captured. Many existing tracking techniques are based on one of the 

following methods: edge extraction, region based correlation or template matching, and 

segmentation techniques [5, 41]. Region-based correlation compares known templates to the 

video stream to locate pre defined markers. ARToolkit [25] is an example of template 

matching, and uses fiducial markers show in Figure 9 and Figure 10, to calculate a cameras 

position and orientation relative to the marker. 

Edge extraction is another commonly used technique in video and image processing 

sharp changes in the brightness of an image are used to determine the location of edges. 

When edge extraction is performed on an image, a new image is generated with just the 

edges shown, as depicted in Figure 11. A problem with edge extraction is surface textures 

can be interpreted incorrectly as edges, particularly when the texture has many different 

colours and brightness levels. Edge extraction is often used as one of the techniques in 

tracking, however there are usually other steps involved which match particular patterns and 

shapes to find the object of interest. 

The segmentation process separates a particular colour range of an image. An object of 

interest can be tracked through the use of colour alone, as demonstrated by [41]. For 

example, when working in the RGB colour model it is possible to separate a range of 

orange by accepting all the pixels which meet the criteria (250 < Red < 255) and (120 < 

Green < 130) and (0 < Blue < 5). The results of this segmentation process are shown in 

Figure 12. 

Figure 10 - Fiducial marker as used by ARToolkit 
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2.2.3 Previous Vision Tracking Work 

This section provides a summary of vision tracking applications and ideas published 

previously which are relevant to this thesis. Rasmussen et al. [41] reviewed a number of 

different tracking techniques including edge detection, region based correlation, and blob 

tracking. They explain that the tracking of simple blobs is much simpler than other 

techniques, and I believe that this will assist with its implementation on an FPGA. The 

authors described how most existing algorithms for blob tracking rely on static or selective 

colour distribution to segment an image accurately. They defined a custom colour space to 

Figure 11-(Top) input image before edge detection. (Bottom) Output image after edge detection 

performed

Figure 12 – (Left) Orange marker used to indicate the location of the thumb. (Right) Image 
after segmentation performed with threshold set to orange colour range 
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assist with an accurate threshold but did not compare against other already available colour 

spaces which might be easier to implement.  

Brusey et al [5] discussed the problems with recognizing images alone in many colour 

spaces, and that in all cases there are different objects which are not distinguishable. They 

present a decision tree approach with a custom colour space that separates brightness, using 

individual colour channels to make decisions.  

There are a number of universities who participate in the RoboCup robot soccer 

competitions [2, 50]. These competitive events rely heavily on the tracking of coloured 

markers for estimating the positions of all the robot players. Since the lighting conditions 

are fixed, many of the competitors perform simple segmentation in RGB space, although 

other colour spaces are also used. For other applications of these trackers, Jebara et al. [24] 

implemented a system which allows a user wearing a HMD to visualise predicted ball 

motions in a game of billiards. A vision tracking system was used to automatically capture 

the locations of the balls in real time.  

Cipolla [9] implemented an indoor vision tracker using motion parallax to estimate the 

3D pose of gloves worn by a user. Dorfmuller-Ulhass et al. [13] described the use of blob 

tracking with retro-reflective markers and an infra-red light to detect the rotations of various 

joints in the hands. They discuss how they initially used rings around the fingers, but found 

that with blobs the centres were much easier to locate. 

2.3 Colour Models 

The properties or behaviours of colours are expressed through what is known as a colour 

model. There are many different colour models available because there is no one model 

which can be used to represent all aspects of colour. So in order to express particular 

characteristics of colours there is a range of different models available. Selecting an 

appropriate colour model requires close analysis of the system requirements and operating 

conditions.

Many image processing techniques can be adapted to use different colour models. 

Segmentation in particular can operate with much better accuracy as it relies on separating 

particular colours from an image finding a particular colour range. It would be beneficial to 

the segmentation process if the brightness of the image was considered on a separate 

channel to the colour information. In particular this improves performance in outdoor 

conditions where sunlight brightness is changing constantly. 
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In this section I explain some simple physics of light, colour and commonly used terms 

when describing colours. This is followed by a detailed description of the RGB, CMY, YIQ, 

YCrCb and HLS colour models. 

2.3.1 General Characteristics 

Light has many different characteristics which need to considered. In physics, colours 

are represented by varying frequencies of electromagnetic radiation. Figure 14 shows the 

visible frequencies and colours they map to while Figure 14 shows a broader range of 

electromagnetic frequency mappings. For the purposes of this research I am interested in the 

visible and infrared frequencies seen by video cameras. Besides frequency there are other 

important properties of colour, namely hue, saturation and brightness [16]. Brightness refers 

to the total light energy, and is also referred to as the luminance of a light. Saturation 

measures how close a colour is to a pure spectral colour, thus pale colours have a low 

saturation whereas pure red has 100% saturation. Hue measures the dominant wavelength, 

however there is not always a dominant wavelength as in the case of brown where a 

combination of colours contribute. 

Figure 13- Visible colours and associated frequencies 

Figure 14 - Electromagnetic frequencies and corresponding names 
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2.3.2 RGB and CMY Colour Models 

The red, green and blue (RGB) colour model is one of the most commonly known 

models. The RGB colour model is based on the tristimulus theory [30] which describes how 

humans interoperate colour. There are three visual pigments of colour in the cones of the 

retina: one of the pigments is most sensitive to a wavelength of around 630nm (red), the 

second is most sensitive to 530nm (green) and the last most sensitive to 450nm (blue). Our 

brain compares the intensities of each of cones and perceives a colour. 

In computer graphics the three colour components are often represented by a value from 

0 to 255, where 0 is no contribution and 255 is the greatest intensity. It is also common to 

represent the RGB model as a colour cube where each colour channel is mapped to axes, as 

shown in Figure 16 and Figure 15. The diagonal of the cube is where each colour channel 

adds equal contributions to produce greyscale colours, shown in Figure 15. In order to better 

understand the RGB colour model, looking at the cube from different angles shows which 

colours are generated along the different axes, depicted in Figure 18 and Figure 17. The 

varying contributions of each of the colour channels produce all the possible colours 

available in the RGB colour space. 

Figure 15 - RGB cube outline showing the grey scale running diagonally through the centre 

Figure 16 - The RGB colour model viewed with a bounding box and axis lines indicating 
corresponding colour channels 
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Two techniques used to generate colours are the additive and subtractive processes. A 

monitor uses an additive process where light is emitted from the screen phosphorus where 

as a printer uses a subtractive process where people see the colours on paper through 

reflected light. A subtractive process can be modelled using the primary colours cyan, 

magenta and yellow: when yellow is added the light reflects the Red and green while blue is 

subtracted. So when all three primary colours are present the combined colour is black, 

whereas in the RGB model when red, green and blue is combined the resulting colour is 

white. The CMY colour model can be generated easily from the RGB model using 

transformation matrix in Equation 1 and Equation 2. 

2.3.3 YIQ, YUV, and YCrCb Colour Models 

The YIQ, YUV, and YCrCb colour models are all very similar: each has a Y component 

to represent luminance (brightness), and two channels for chromaticity (colour) information. 

The YIQ model is used in the Unites States as the commercial colour television 

broadcasting standard NTSC (National Television System Committee). However the lower 

bandwidth assigned to the chromaticity provides an impaired colour quality, consequently 

variations of the YIQ model have been developed. The YUV model is used in the PAL 

(Phase Alteration Line) standard and provides an improved quality and is used by most of 

Figure 17 - RGB colour space looking along the diagonal from black to white 

Figure 18 - RGB colour space looking along the diagonal from white to black 
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Europe, Africa, and Australia. Finally, the YCrCb model is another variation of the YIQ 

model used in file formats such as JPEG and digital video formats. I will discuss the YIQ 

model from here on, although the concepts apply directly all three of the above colour 

models.

The three colour channels are quite different from the RGB channels: Luminance (Y) 

and chromaticity (IQ). This model dedicates one entire channel for luminance (brightness) 

and uses the other two channels for chrominance (colours). 

To move from the RGB colour space to YIQ, a matrix multiplication (in Equation 3) and 

the transformation will produce the new YIQ. Converting back from YIQ to RGB can also 

be done using the inverse transformation as shown in Equation 4. 

Figure 19 shows the transformation from the RGB colour model to the YIQ model. This 

demonstrates how the colour space has been modified and can be use in a different manner. 

Notice the Y axis is now representing brightness information, and the white brightest area 

can be seen. 
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One of the advantages to this model is that it is well suited to compression - this is based 

on the fact that the human eye is more sensitive to particular wavelengths. For example, as 

our eyes are not very sensitive to blue so frequency of the blue component can be reduced 

somewhat before humans notice a quality loss. Also humans are much more sensitive to 

brightness. Much of an images definition and sharpness information is stored in the Y 

component as such leaving this channel relatively untouched makes the pictures quality loss 

unnoticed by humans. 

When performing segmentation the YIQ colour space can be used to improve robustness. 

This is because when selecting the colour to be segmented from an image it can be accepted 

over a wide range of lighting conditions. When the threshold parameters are set the Y 

channel should accept a vide range for example 30 – 220 and the IQ channels should only 

accept a small range which varies depending on the colour being segmented from the 

image. 

Figure 19- YIQ colour model with RGB cube outline to demonstrate the transformation 

Figure 20 - YIQ colour model viewed along the Y axis 
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2.3.4 HSV Colour Model 

The Hue Saturation Value (HSV) colour model is designed to be more intuitive for 

humans to use. It maps the Hue as an angle, the Saturation across the horizontal axis, and 

the Value along the vertical axis. Artists commonly use this colour model as they can easily 

modify the black and white component by changing the V (value) channel, change the tint 

by altering the S (saturation) value and the colour by the H (hue) represented by an angle. 

Visually this model is represented by an upside-down hexagonal pyramid as shown in 

Figure 21. There are a number of other similar colour models such as HLS (Hue Lightness 

and Saturation), and HSB (Hue Saturation and Brightness) which all use an angular Hue 

value instead of a rectangular chromaticity component. They are all very useful for human 

interpretation of colour but they are not suitable for digital signal processing. The hue value 

is an angle and requires many trigonometric calculations to convert colour models such as 

RGB.

Figure 21 - HSV Colour model 
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3 Selection Criteria 
There have been a number of important decisions I have made throughout the 

development of the system, and this chapter explains the reasoning behind each of the 

decisions. This chapter is based on both theoretical selection decisions as well as practical 

design decisions. Firstly I explain the reasoning behind the algorithm selected for the vision 

tracking to be implemented on a reconfigurable computer. Next I present the type of marker 

used to indicate the location of the user’s thumbs. This involves exploring a number of 

different shapes, sizes and colours used to determine which provide the best results. Finally 

the techniques used for programming the FPGA and some of the unique considerations 

relating to programming parallel hardware are discussed. 

3.1 Algorithm Selection 

As mentioned earlier the Tinmith system uses ARToolkit for the tracking of the user’s 

thumbs. ARToolkit uses a template matching technique to find pre-defined markers in the 

incoming video stream. The tracking data gives a full 6 degrees of freedom (DOF) tracking 

information for each of the defined markers. However Tinmith only requires 2 DOF for a 

fully functional user interface, as described in [35]. Working planes are used to model 3D 

objects at a distance using 2D coordinates similar to techniques used in CAD modelling 

[30]. In search of an appropriate algorithm I have considered any algorithm in which can 

provide 2 DOF or more, but generally less DOF simplifies the algorithm. 

There are many different vision tracking algorithms but not all of them can be easily 

implemented on a FPGA. To make a selection I have followed some simple guidelines. 

Firstly the use of floating point numbers or division should be minimal or avoided all 

together. The use of floating point numbers or division on FPGAs is undesirable because 

large areas of the FPGA are required to implement the needed circuitry. Handel-C, as 

discussed earlier in section 2.1.2, does not directly support floating point numbers but this 

can be overcome by using lookup tables where all the answers are stored for a known 

problem set. Another approach is to use a prewritten module in another language such as 

VHDL or Verilog and import the functionality into Handel-C. At the beginning of this 

project, DK2 was the latest version of Celoxica’s development suite. Since then, the release 

of DK3 and the latest version of the platform developer’s kit (PDK) provide support for 

floating point numbers. However it still applies that the use of them requires large areas of 

the currently available space on the RC200’s Xilinx [52] Vertex II 1000 FPGA. It is also 
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desirable to keep the algorithm simple so as to minimise the area used on the FPGA 

allowing room for other tasks like serial communications, video capture, and VGA output. 

With these criteria I have found that the region based correlation techniques have many 

floating point calculations and the complexity is higher than other algorithms. Next I 

considered edge detection techniques, a simple Sobel edge detection is easily implemented 

on an FPGA, but this does not return information in the form of an X and Y coordinate of a 

marker. To do this, further processing is required to find an object’s location which also 

introduces extra complexity. Finally, segmentation techniques were considered, which can 

easily be performed on an FPGA in runtime. The statistical filters mean, median and mode 

can then be used to find the centre of mass based on a colour. Each of the different 

algorithms provides similar tracking results and can be implemented on an FPGA.  

3.1.1 Median 

The median algorithm can be used to find an approximate centre of mass after 

segmentation. The statistical meaning of median is to calculate the middle value of several 

readings, where the readings are sorted in increasing order. In software it can be described 

as being implemented with an array of buckets for every row and column in the image as 

depicted in Figure 22. As pixels are found, the matching buckets are incremented. At the 

end of this process the buckets in the row and column arrays are individually traversed and 

added up until the total reaches half the total number of hits, when this occurs then the 

median pixel is found.  

It was found previously by [48] that the median is more tolerant to noise pixels, and will 

not track the wrong object entirely when the area of the marker is greater than that of the 

combined noise pixels. Also when the markers centre coordinates are missing the accuracy 

of the median does not perform as well as the mode. 
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3.1.2 Mode  

In statistics the mode is the most common value found in a group consisting of several 

readings. When calculating the mode it also required two arrays of buckets to be 

maintained, as shown in Figure 23. As each row and column is traversed, when a matching 

pixel is found the corresponding bucket is incremented. After all pixels have been processed 

the two arrays are traversed to find the most commonly occurring location for both X and 

Y.

The mode algorithm is very resistant to noise pixels unless they are concentrated along a 

single axis. It also finds an accurate centre of mass when there are obstructions to the 

marker. However the mode will fail with concentrated noise in the shape of a long narrow 

object which can have a smaller mass compared to the marker [48]. 

Figure 22 - Calculation of the median pixel in a 10 X 10 image 
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3.1.3 Mean 

The mean algorithm (also known as the arithmetic average) finds the average centre 

location of a group of values. The mean is calculated by adding up all the given numbers 

and dividing the sum by the total count, depicted in Figure 24. When calculating the mean 

of the segmented area the software adds up the X (xtotal) and Y (ytotal) locations of the 

accepted pixels and divides each by the total number of accepted pixels.  

The mean will not track completely the wrong object until the area of the noise pixels 

becomes greater than the area of the marker pixels. It performs better compared to the 

median and mode when the centre of the marker pixels is occluded. Its weakness is any 

noise in the image cause the centre of mass to be pulled in the direction of the noise [48]. 

Figure 23 - Calculation of the mode pixel in a 10 X 10 image 



30

3.1.4 Algorithm Summary 

I studied the accuracy of each of the filters with a variety of software test cases on a PC 

and found they all performed reasonably well but with varying failure conditions. My final 

decision was based on which was best suited to implementation in hardware. The median 

and mode algorithms both require two arrays of buckets to be maintained in memory, and 

random memory access times on the RC200 are slow in comparison to the time it takes to 

traverse the pixel array linearly. The mean algorithm only requires three counters to be 

maintained with Xtotal, Ytotal and the number of hits; thus I decided mean is the best suited 

filter to implement. 

Figure 24 - Calculation of the mean pixel in a 10 X 10 image 
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3.2 Marker Shape, Size, and Surface 

Based on the segmentation algorithm I found to be appropriate for FPGA 

implementation in the previous section, a unique marker is needed to identify the location of 

the user’s thumbs. Tinmith previously used fiducial markers supported by ARToolkit, 

which uses region based correlation tracking techniques and as such are not suitable for 

segmentation based tracking.  

3.2.1 Shape 

As segmentation is not looking for a particular shape or pattern I am not restricted to any 

predefined shape. To select the best shape there are some properties which can be used to 

make the tracker more reliable. As the user moves their hands and head the angle at which 

the camera is viewing the marker varies. So selecting a shape that appears the same from all 

angles helps improve the accuracy of the centre of mass calculation. For example if we use 

a sphere it appears to be the same shape from all angles, shown in Figure 25, as long as no 

occlusion occurs. However if we use a disk its shape appears to change when we look at it 

from different angles, shown in Figure 26.  

One of the conditions which can not be avoided is when the marker becomes occluded. 

One of the ways this can happen is when the user blocks the marker with their other hand; 

this of course can not be avoided. Another problem occurs when the user rotates their hand 

so the back of their thumb faces the camera. Both of these conditions can not be prevented 

by using a different shape marker and are generally avoided while using the Tinmith 

system. 

Figure 25 - Markers viewed from different angles. (Left) Completely occluded by the users 
thumb. (Others) appear circular in shape 
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3.2.2 Size 

When selecting the size of the marker from the usability aspect it is desirable to use the 

smallest one possible. One reason for doing this is to avoid interfering with the user’s 

dexterity. If the marker is too large or heavy this may affect their control while using the 

Tinmith system. 

On the other hand it is important not to use a marker which is too small. When 

performing segmentation to find the markers it is common for there to be noise or unwanted 

pixels accepted. If the marker is too small the noise pixels will affect the accuracy of the 

centre of mass algorithm and provide inaccurate results.  

I propose using a marker which is approximately 1cm in diameter so that it is not too 

small causing the tracker to fail and not too large where it would be a distraction to the user. 

3.2.3 Surface 

The surface used for the marker affects the quality of segmentation quite dramatically. 

When sunlight hits the marker, the surface reflects the light which causes bright spots on the 

surface (specular highlight) as shown in Figure 27. By reducing the bright spot we can 

reduce the threshold range. Shiny surfaces tent to be affected the most by sunlight and 

should be avoided. Matte surfaces tend not to have such a large specular highlight but it is 

still noticeable. Another option is to use a surface with a furry finish, when the light reflects 

off this kind of surface it is scattered in many different directions and the specular 

highlights no longer form a singular bright spot. Figure 28 illustrates a furry marker 

photographed in a range of different lighting conditions. 

Figure 26 - Disc shaped marker viewed from different angles 
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3.3 Colour Space Selection 

One of the most difficult parts in developing a tracking system is designing it to work in 

a variety of different environments. Outdoors operation, as mentioned previously, requires 

the tracker to be resilient to varying lighting conditions. When capturing a video stream 

from a camera a common input format is RGB. When segmentation is performed using the 

red, green, and blue colour channels the brightness information is represented through all 

three channels. The earlier discussion of colour spaces explained how the greyscale colours 

are represented through the diagonal of the cube with black at one end and white at the 

other. So to accept the marker colour over a range of lighting conditions the range of all 

three (RGB) channel thresholds must be increased over the diagonal. Doing this also 

accepts more colours in the threshold and increases the noise and reduces the trackers 

accuracy.

An alternative is to use a colour model which dedicates one channel to brightness 

information. Colour models such as YCrCb, YIQ, and YUV all use the Y (luminance) 

channel to represent brightness. If we choose to use the YCrCb colour model we can select 

a particular colour using the Cr and Cb channels using a very small range while accepting a 

large range in the Y channel. This has the affect of selecting a colour over a range of 

different lighting conditions. 

This thesis focuses on processing an image in an outdoor environment where there will 

be continually changing lighting conditions. I am also interested in performing 

segmentation on a particular colour regardless of the changing lighting condition. So from 

Figure 27 - Orange ping pong ball in a range of different lighting conditions 

Figure 28 - Fury marker used to reduce the specular highlights 
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the above research there are three models which should be considered YIQ, YUV and 

YCrCb. Each of these models allocate a separate channel the luminance and two channels to 

colour. So when performing segmentation a colour can be specified specifically and a range 

of luminance conditions can be accepted during the segmentation process. 
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4 Implementation 
The design of FPGA circuits is somewhat different to that of conventional software 

design. The biggest design difference between the two is the parallel architecture of the 

proposed FPGA. Parallel processing allows us to develop designs which have more than 

one process executing simultaneously. The RC200 platform has a maximum clock 

frequency of 80MHz which is considerably slower compared to that of a modern desktop 

computer, however with careful design parallelism can be used to develop designs than run 

at equal or often improved speeds compared to software implementations. In this chapter I 

explain the fine grained details of implementing the previously explained tracking algorithm 

onto a reconfigurable computer. 

4.1 RC200 Platform 

The Celoxica RC200 reconfigurable computer was chosen as the target platform for the 

hand tracking system, this is shown in Figure 29. The hardware consists of a Xilinx Virtex 

II 1000 FPGA, 8 Megabytes of external memory, programmable clocks, TFT touch 

sensitive screen, Ethernet, audio, video out, VGA out, video in, parallel, and RS-232 serial 

ports. The RC200 is a single board with dimensions of 190mm x 150mm and can run from a 

12V power source. The platform contains a Phillips video capture device and provides 

synchronous streaming of pixels to the FPGA. This particular platform was selected 

because it has a dense FPGA, supports streaming video, has a serial port for connection to 

the host, and has an extensive Handel-C application programming interface. 

Figure 29 - RC200 Reconfigurable computer platform.  
(Left) - Top view of TFT screen. (Right) - Bottom view of FPGA and other electrical 

components.
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4.2 Language Selection 

Of the available programming languages discussed earlier I decided to use Handel-C [6] 

for two main reasons, firstly Handel-C supports the features of the RC200 platform and 

provides an interface to all the additional features. Secondly Handel-C is a hardware 

description language based on an extended subset of the standard ANSI-C software 

programming language. The major advantage of it is there are no intermediate stages and it 

allows hardware to be directly targeted from software.  

To produce the bitstream for the final program there are a number of steps involved. 

Firstly the code is developed using a subset of the ANSI-C specification, one of the most 

noticeable differences is its N length data types where the actual bit length is explicitly 

specified. The language also provides the ability to control parallel execution of processes 

through the use of the par operator. Figure 30 is a small snippet of Handel-C source code 

using both a variable width declaration and the par operator to initialise two variables 

simultaneously. 

Another important feature of the language is the timing control the keyword delay can be 

used to wait for exactly one clock cycle. This can be used to synchronise processes where 

there are uneven execution times that need to be matched.  

DK is then used to compile the source code, and a number of different output formats are 

available such as EDIF, Verilog, VHDL and simulation DLLs. I chose to generate EDIF 

which is compatible with Xilinx ISE [52]. I then used Xilinx’s tools to generate the final 

bitstream which can be loaded onto the FPGA. 

Overall Handel-C provides the necessary features that allow software engineers to 

develop hardware applications, although the development time on hardware still should be 

expected to take longer than an equivalent software program. After the initial learning of the 

new language, the increased development time is due mainly to the compilation time 

required to generate the bitstream used to configure the hardware platform, which can take 

more than one hour. 

Figure 30 - Handel-C source code snippet initialising two variables simultaneously 
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4.3 Software Architecture 

This sub section describes the distinctive design architecture developed specifically for 

operating on a hardware platform. A summary of each of the intercommunicating parallel 

processes developed for the tracking system is also presented. Also it explains how Tinmith 

was successfully integrated with the hardware tracking solution. 

4.3.1 Pipelined Design 

The design of the circuit architecture requires a somewhat different approach compared 

to that of a software application. One of the biggest considerations is to exploit the parallel 

processing capability available on the FPGA. Using a high level language such as Handel-

C, some parallelism is already implemented in the libraries. For example when you import 

the floating point libraries in Handel-C the programmer is provided with an interface to 

access optimised floating point operations. However further performance increases can be 

achieved by carefully designing the architecture and flow of an application to exploit 

parallelism. 

A unique design idea that can use in parallel architectures is pipelining. This technique 

can be used to improve the performance of some algorithms. It breaks up the data path into 

several logical steps that are all dependant on the previous, as shown in Figure 31. This 

approach increases throughput but also increases latency. It is particularly well suited to 

FPGA design as each of the logical blocks can exploit the parallel architecture of FPGAs, 

Figure 31 - Pipelined datapath over 5 clock cycles 
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and also pipelining maps particularly well to register rich architectures like those provided 

by Xilinx. 

There are many different ways pipelining can be implemented, for the tracker design I 

assessed all the processes required, at a high level these can be summarised as follows: 

Capture a pixel from the video image 

Perform segmentation to separate the marker from the image 

If the pixel is the correct colour accumulate the X and Y location from within the 

frame. Also add one to a counter for each accepted pixel 

At the end of the frame divide the accumulated X and Y values by the counter 

Send the result to the RS232 serial port 

Render the video image to the video display 

To maintain a system which runs in real time without a reduced frame rate it is required 

that each pixel is processed before the onboard Phillips SAA711H capture chip presents the 

next pixel for reading. To achieve this, the dataflow path can be broken up into 4 parallel 

processes: pixel capture and segmentation, division for mean calculation, RS232 serial 

communications and video display. These processes are well suited to a pipelined 

architecture and can be applied as shown in Figure 32. 

Figure 32 - Vision tracking data path pipeline. Note clock cycles used as pipeline reference 
time internal block processes may take more than one clock cycle 
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4.3.2 Circuit Design 

The application written consists of four parallel processes: video input, VGA output, 

mean calculation (division), and RS-232 serial communications, each of which will be 

discussed in more detail in the following sub-sections. Although the four processes are run 

in parallel to each other, they are all closely interlinked using control flags for accessing 

common data values, as depicted in Figure 33. The flow of the system starts with the video 

stream; a pixel is read and evaluated according to the threshold values. For all the values 

that are accepted, a running total of the X and Y pixel locations is stored. When the end of 

the frame is reached the mean calculation process computes the centre of mass of the 

accepted pixels. The result from this is then sent via the RS-232 serial port and displayed to 

the TFT display for debugging using a cross to indicate the location of the marker being 

tracked. The TFT screen is typically used as a debugging device when tuning the tracker 

Figure 33 - Flowchart of the parallelised hand tracking algorithm implemented in hardware 
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outdoors. The pseudo code for the design has been presented in Figure 34, which outlines 

the flow of the system on a pixel by pixel basis. 

Using the TFT display requires the main clock on the FPGA to be set to exactly 

25.175MHz. During the development of the algorithm it was quite difficult to optimise each 

of the processes so that they completed their processing before the next pixel was presented. 

This involved using optimised Handle-C code, for example instead of using a for loop a 

while loop would be used. In most languages this would make minimal difference to the 

performance but when using Handel-C the operation of a while loop can be parallelised (in 

most cases) more than compared to a for loop [6].

Figure 35 depicts the final mapping of the circuit on the FPGA, which is a layout 

diagram generated with the Xilinx tools and is useful for quickly visualising the area used 

and can also be used to optimise the placement and routing of the components.  

4.3.2.1 Video Input  

The video input process captures a video stream from the Phillips SAA711H chip. This 

provides a synchronous stream of pixels which are evaluated in real time. The pixels can be 

captured in a range of formats, and I have chosen YCrCb as this separates brightness and 

colour information which makes it well suited to outdoor tracking. As each pixel is 

captured, the scan position is used to evaluate what path will be executed in the circuit. The 

first and most common path is executed when a pixel is read and at this point segmentation 

is performed to determine if it falls between the threshold values. When a pixel is within the 

threshold values, the X and Y locations are processed using the decided algorithm until the 

end of the frame. The second path is executed when the X and Y scan values indicate the

end of a frame (X = 720 and Y=576). Finally, a shared control flag is set to indicate the 

frame is complete and the overall calculation process can begin. 

Figure 34 - Pseudo code for FPGA vision tracking algorithm 
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Figure 35 - FPGA circuit layout generated with Xilinx Floorplanner  
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4.3.2.2 Mean Calculation (Division) 

The purpose of the mean calculation process is to perform division on the results 

calculated in the section above. The mean calculation process runs as an endless loop, and a 

control flag is used to signal when new values are ready and the division can be preformed. 

When this occurs the X and Y totals are divided by the frame hit counter to provide the final 

average X and Y results. When this step is completed another control flag is set indicating 

the results are ready for the video output process. Finally, the results are sent to the RS-232 

circuit in a custom binary protocol to the Tinmith system. 

4.3.2.3 Video Output 

The video output process is used to display a picture on the TFT screen and the VGA out 

of the RC200. The results from the mean calculation are used to display the location of the 

blob being tracked, as shown in Figure 36. This video output is not essential for the 

operation of the algorithm but has proven to be a valuable tool when tuning the different 

coloured blobs. It also means the RC200 is a stand alone tracker not relying on the 

accompanying laptop computer to demonstrate its operation if needed. 

Figure 36 - Output from the RC200 showing image threshold and the calculated marker 
centre point, combined with the camera view of the outdoor environment 
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4.3.2.4 RS-232 Serial Communications 

The RS-232 serial port is used to send results to the host computer, as well as receive 

commands used to configure the RC200. When the RC200 is reset, a set of system 

initialisation packets are sent to the host indicating the status of the RC200. The RC200 then 

enters normal operation where it reads incoming commands used for system configuration 

and sends tracking information to the host. Incoming commands include setting the 

threshold values for tracking of different coloured blobs, setting the camera input port, and 

running in debugging mode when the image segmentation is displayed to the TFT screen. 

Outgoing tracking data is sent when the mean calculation process indicates a new result is 

ready. The system sends approximately 25 updates a second, which is the standard 

interlaced PAL refresh rate provided by the Phillips capture chip. 

It was decided the configuration of the serial port would be set 8N1 (8 data bits, no parity 

and 1 stop bit) at a baud rate of 38400 bps. These were chosen to match some of the existing 

serial communications settings in software. The packet structure was designed to handle 

configurations of multiple markers allowing for future expansion and new features to be 

added to the system. The incoming control packet structure is described in Table 1 and the 

outgoing result packet structure in Table 2. 

Field Size 

(Bits)

Value Description 

Sentinel Head  8 0x55 Marks the beginning of the packet 

Command 8 0-255 Range of different control commands 

used to configure the tracking system 

Val1 16 0-

65535

Used as the first variable value for the 

different commands 

Val2 16 0-

65535

Used as the second variable value for the 

different commands 

Marker Number 8 0 – 255 Used to indicate the marker the settings 

should be applied to 

Sentinel Tail 8 0xAA Marks the end of the packet 

Table 1 - Packet Structure for incoming commands used to configure the tracker 
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Field Size 

(Bits)

Value Description 

Sentinel

Head

8 0x55 Marks the beginning of the packet 

Command 8 0-255 Used to indicate tracking result packet 

XPos 16 0-

65535

X coordinate of the marker being tracked 

YPos 16 0-

65535

Y coordinate of the marker being tracked 

Hits 16 0-

65535

Number of pixels accepted after 

segmentation

Sentinel

Tail

8 0xAA Marks the end of the packet 

Table 2 - Results packet structure sent from tracker toTinmith 

4.3.2.5 Tinmith Integration 

The vision tracking system in the RC200 was integrated with the existing Tinmith 

system so that it could be combined with the existing research. Figure 37 is a screen capture 

showing how the various devices in the system work together to perform the vision tracking 

and video overlay task. The RC200 communicates with the PC by generating 10 byte data 

packets and transmitting these via an RS-232 serial cable. The laptop then reads these 

Figure 37 - Overall system operation, showing the results of the RC200 integrated with the 
general purpose laptop, and video AR implemented using hardware overlay of the two video 

signals
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packets in and draws the cursor position as part of the 3D overlay and is used to supply the 

user interface with 2D tracking information. A new interface was created relatively easily 

for Tinmith which completed the integration of the new tracking system. 

With the image processing no longer being performed in the laptop, it is now possible to 

perform video overlay in a specialised video overlay device, shown in Figure 38. This 

device performs chroma keying on two video signals, a specified colour is set in stream one, 

anywhere this colour is used the second video stream is overlayed on top of this colour, the 

combination of the two streams is shown in Figure 39. The laptop still performs the 

remaining processing of sensor data for rendering, with the Tinmith-Metro application 

being implemented using the Tinmith-evo5 software architecture [36]. 

Figure 38 - MagicView chroma key box used for video overlay 
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Physical World 

Virtual World
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Figure 39 - Final design flow with video combiner unit 
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4.4 Parallel Code Examples 

During the development of the software I developed a number of interesting 

programming methods to achieve a synchronised parallel design. This section outlines some 

of the techniques I was required to use during the development phase. It does not describe 

the operation of each of the processes but explains some of the unique syntax and timing 

issues which were exploited. 

4.4.1 System Initialisation 

Figure 40 is a small code snippet of the initialisation where the four main processes 

begin execution, and the ordering of each of the processes is important. The first process 

initialises the RS-232 port setting up the required parameters of 8 data bits per packet, no 

parity and 1 stop bit (8N1) at a baud rate of 38400 bps. Following this the division method 

is started (further explained in the next section) which begins by sending an initialisation 

packets indicating the tracker is starting up. The next two processes Videoin and VGA out 

require the enable calls to be performed in parallel, however the remaining calls that set the 

input source and begin capturing the video stream require a sequential execution. This is 

done by using the seq operator within the par statements allowing the correct execution 

order.

Figure 40 - System initialisation 
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4.4.2 Mean Calculation (Division) 

Another process that required careful consideration was the division process. As 

explained earlier I chose to use the pre compiled fixed point libraries supplied by Celoxica 

[6]. The definition of MyFixed type defines the accuracy in which the variables will 

operate. I set the definition to use 32 bit exponent and 0 bits for the mantissa as no decimal 

places are needed in the division calculation. The first step in this method required a delay 

of 500 clock cycles before the process could begin. This was required so the serial port 

could be completely initialised before it is used. Following this a series of initialisation 

packets are sent indicating the tracker has completed its initialisation phase and the results 

will be following these packets. 

The rest of the mean calculation process operates from within a while(1) loop indication 

the process runs in parallel for the remaining execution time. At this stage there are three 

other parallel processes running so unlike a traditional software program, a while(1) loop 

can operate without all the programme’s logic within it. The first check made inside the 

Figure 41 - Snippet of the mean calculation process 
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loop is used to check if the parallel segmentation process has indicated a video frame has 

been completed. This allows two parallel processes to intercommunicate through the use of 

a shared data flag, and when this occurs the division of the X and Y totals with the hits is 

performed. This call to the FixedDivUnsigned method requires more than one clock cycle, 

the actual number varies depending on the input, and on completion it was required to 

include a delay of an additional clock cycle before the X and Y location of the marker is 

sent. Finally the two flags indicating a new result is ready for display are set which is read 

by the VGA output process. 

4.4.3 Simulation and Compilation Issues 

Celoxica’s development suite DK2, as discussed earlier, can compile source code into a 

number of different formats. One of these can be used to create a Dynamic Link Library 

(DLL) for use with the simulation software also provided in DK2. The simulation software 

is designed to run the application being developed on the PC whilst simulating the 

execution of a parallel program. Whilst using the simulator the speed the simulation runs at 

is much slower when compared to running it on an FPGA., however when compiling the 

required DLL it is much faster compared to compiling the bitstream. Unfortunately when 

using the simulator it was necessary to make some small modifications before compilation. 

Also, instead of using a video stream you can select a static image for testing the video 

input. At the time of development there were some bugs relating to the RAM access and 

simulation could only be used for some parts of the tracking application. 

Finally a note about compilation, when developing this application the biggest difference 

compared to developing a software application is the compilation time. During development 

the compilation times increased as the complexity increased with compilation times of up to 

1 hour. Taking this into consideration much more time was spend carefully designing and 

checking code logic before compilation. 

4.4.4 Parallel Programming Summary 

Designing and programming on a parallel architecture device is currently more difficult 

when compared to doing the same task on a general purpose computer in a high level 

language such as C++ or java. However the improvements that can be achieved through 

using a good design with an appropriate language to express the design are quite 

impressive. This tracking system was developed with the clock rate fixed at 25.175MHz 

with room still available on the FPGA for other tasks. The software prototypes written in 
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C++ ran on a 400MHz machine and suffered from a reduced frame rate in the processed 

video stream. Although the programming was somewhat difficult during the development of 

this application some of the problems experienced are due to the immature age of the 

development environments. Handel-C is only 8 years old and currently has a limited 

audience interested in programming FPGAs, I feel some of the difficulty experienced 

during the development of this software was due to bugs in the compiler and associated 

synthesis techniques used to create the bitstream. Others were associated with the strict 

timing synchronisation required by parallel designed architectures. 
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5 Results 
After the implementation of the algorithm on the FPGA, I performed a number of tests to 

evaluate its performance and robustness. Firstly a performance evaluation outlines the 

device usage and maximum running frequency. This is followed by tests to evaluate the 

operation of the tracker outdoors, in particular the range of lighting conditions in which the 

tracker can operate.  

5.1 Hardware Performance 

Once the hand tracking algorithm was implemented on the FPGA, both the clock speed 

and device utilisation were recorded. These values were captured from the output files 

generated from the Xilinx place and route tools. Including the algorithm and a 32 bit divider 

circuit, the total device utilisation was 83%, or 4263 out of 5120 slices of the FPGA. The 

theoretical maximum clock speed was 105.27MHz, however the actual clock speed of the 

system was set to 25.175MHz due to the requirements of the TFT display device. 

To determine the actual device utilisation of the hand tracking algorithm itself without 

the divider circuit (something that could be easily performed on the host in a general 

purpose CPU), the application was recompiled with it removed. The percentage of FPGA 

consumed dropped to 23% or 1177 slices. Therefore, the 32-bit divider circuit consumed 

3086 slices or 60% of the FPGA. Using 23% of the available room it is possible to 

configure the FPGA to run four trackers simultaneously. Also with the newest version of 

the RC200, the RC203 (which has a FPGA with 3 times the density), it is possible to have 

at least twelve of the trackers running. 

5.2 Marker Shape Size and Surface 

Selection process for the marker used to locate the user’s thumbs was described in 

Section 3.2. After the tracker was developed I performed a number of tests to find which 

markers performed with the best accuracy. 

5.2.1 Shape 

The shape chosen for the markers is a sphere. During testing I experimented with other 

shapes such as a thin coloured decoration disc. As expected, as the user rotates their hand 

the area of the disc becomes too small for the tracker to locate. A number of other shapes 

were used during these experiments but it was found a spherical shape outperformed them 

all while the user rotates their hands. 
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5.2.2 Size 

As discussed earlier the goal regarding the marker’s size has been to use the smallest 

possible size marker whilst maintaining good tracking results. To find the best size I 

experimented with spherical markers from .25cm to 3cm in diameter. After using each of 

the different sized markers it was found that 0.5cm to 3cm markers would perform 

accurately at an arms length from the camera. Considering this 0.5cm diameter markers 

have been used in the final system, since they are no larger than the users thumbs. 

In terms of accuracy, all of the marker sizes tested produced cursors which were within 

the bounds of the marker, assuming that the signal to noise ratio is relatively high. When 

smaller markers are used, the signal to noise ratio is reduced, and the accuracy will suffer. 

Appropriate marker sizes must be chosen to ensure that in noisy environments the tracker 

will perform properly, while still being small enough to point to objects accurately. Of the 1 

cm, 2 cm, and 3.5 cm markers tested, I decided to use the 2 cm markers since they are the 

size of the finger tips. 

5.2.3 Surface 

The first marker I begin with was an orange ping pong ball. The problem with this ball is 

that the surface is very smooth and is affected by specular reflections. The reflections on the 

top of the ball would make it appear to be white rather than orange, shown in Figure 42. To 

overcome this problem I experimented with other surfaces and found the furry surface of a 

pompom reduced the reflections significantly. By using pompoms the segmented image 

would show a well defined circular result and thus improve the operation of the centre of 

mass algorithm. 

Figure 42 - White spot on shiny marker surface causes poor segmentation as shown in 
bottom row 
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5.3 Marker Tuning 

To determine which markers operate the best a number of different experiments were 

performed. I begun by selecting a range of different coloured pompoms (orange, red, green, 

blue and yellow) then for each of these tuned the threshold values, using the interface 

shown in Figure 43, and tested their operation outdoors. To tune colours, the YCrCb filter is 

opened up to full range (0-255 with 8 bits per channel) and the segmented image is viewed 

on the RC200 TFT screen. The minimum (min) value for the Cr channel is then adjusted 

until just before it begins to filter out the blob. The maximum (max) value is adjusted in the 

opposite direction until the ball is just accepted. The min and max values are recorded and 

then opened back up to full range. The same process for min and max is then performed for 

the Cb channel so that the ball is segmented. The Y channel is slightly restricted to 10-240 

so that it removes out black and white pixels (which contain no real colour information) and 

then the Cr and Cb ranges are both set to the measured values. The colours are then tested 

against the environment to see if there are matches against any other objects to interfere. 

During testing it was noticed that the CCD camera sees colours in the environment 

different than our own eyes because the sensor operates over different light wavelengths. 

When looking at the output, some colours such as blue appeared with a noticeable green 

colour. When selecting coloured balls to use, the colour the camera sees (and not what the 

human sees) must be taken into consideration. The following sub sections summarise the 

colours that were tested outdoors. 

Figure 43 - Tuning interface used on Tinmith software 
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5.3.1 Green Markers 

When testing the green balls, I noticed that they conflicted with many of the leaves in the 

trees nearby, but not the grass. Under close inspection the blades of grass actually contain 

quite a lot of yellow and so there was no conflict. Unfortunately, the amount of noise from 

the trees was enough to affect the tracker.

5.3.2 Blue Markers 

The blue coloured balls occasionally conflicted with the sky under certain brightness 

conditions, such as when the camera’s auto adjustment darkened the overall image. The 

blue ball appeared to be a turquoise colour in the camera, but when a more pure blue colour 

was used it still conflicted with the sky colour.  

5.3.3 Orange markers 

The orange colour generated the best results with my tracking system. After calibrating it 

was not common for there to be objects in the environment of a similar colour that would 

cause the tracker to operate incorrectly. The only time where a conflict occurred was when 

looking at a pedestrian crossing sign, which is understandable considering it was a similar 

shade of orange.

5.3.4 Yellow Markers 

The yellow marker balls experienced slight conflicts with the grass, which as mentioned 

previously contained large amounts of yellow. This colour would be suitable for use in 

environments without grass however, such as on concrete or dirt perhaps. Another problem 

with yellow is that it is similar to orange and it is not possible to separate these two colours 

from each other with their YCrCb ranges.  

5.3.5 Red Markers 

The second best results were with the red coloured balls. There were no conflicts for this 

colour with the rest of the environment, except for a stop sign on campus. The results were 

not quite as good as orange, but this could perhaps be improved with further tuning of the 

YCrCb ranges. Once again, this colour is similar enough to orange that it too prevents them 

from being used together. 

From the experiments, it was discovered that trying to provide highly saturated colours 

for the camera was more difficult than first thought. Even when using highly saturated 

coloured balls the camera tends to capture them with a slightly washed out colour which 
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somewhat reduces their distinctiveness. This may be reduced as higher quality cameras are 

used but may be difficult to remove altogether. 

5.4 Hand Tracker Results 

The purpose of this research was to develop a separate hand tracker using an FPGA to 

integrate with the Tinmith-Metro software. The RC200 contains an RS-232 serial port in 

which is used to transmit 10 byte packets to the PC for each update to indicate the X and Y 

coordinates of the cursor, as well as the number of pixels used in the calculation as a 

confidence factor. The RC200 captures frames at the PAL refresh rate of 50 Hz, but only 

provides frames to the FPGA at 25 Hz due to interlacing in the video signals. The RC200 

processes frames in real-time and so the results are available within 1/25th of a second, 

although there is additional delay added by transmission across the RS-232 cable and in the 

host laptop operating system. Figure 44 shows a capture of the segmented overlay and 

extracted centre point from the RC200, combined with the view from the camera. 

When the 2D cursor is plotted on the display in the Tinmith-Metro software, there is 

some slight lag with the cursor. This lag is noticeable because the RC200 and the video 

overlay hardware operate at PAL refresh rates, while the laptop is slightly behind with its 

processing and rendering of the 3D AR overlay. Previously this effect was not noticeable 

because the entire output was delayed, but now some parts of the display are faster than 

others. Possibly a delay could be added to the video stream so that the lag is synchronised, 

but then this would make the entire system lag from the physical world. 

Figure 44 - RC200 performing tracking – overlaid cursor and segmented area are combined 
with the view from the camera 
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In comparison to the previous ARToolKit based tracker, the new tracker appears to be 

more robust in outdoor environments under most conditions. It is able to more easily 

survive extreme lighting conditions such as when the sun is almost in the field of view of 

the camera, which is very common. The tracker’s main weakness is operating under twilight 

conditions when the camera is unable to distinguish colours in the environment as easily, 

while ARToolKit uses only black and white fiducials. However, the ARToolKit tracker fails 

in scenes that are half bright and half dark, and with specular highlights on the flat markers. 
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6 Conclusion 
The research completed for this thesis has facilitated the development of a new tracking 

system developed on a FPGA. This has been used to replace ARToolkit used previously by 

the Tinmith AR backpack computer. A significant performance increase was achieved, 

particularly when used outdoors. 

In this thesis I initially presented an overview of the research domains of field 

programmable gate arrays, augmented reality, vision tracking and colour models. The next 

section then explained the selection criteria I used to find a practical approach to 

implementing a new tracking system on an FPGA. 

I have described how the previous software hand tracking system used by Tinmith was 

replaced with a reconfigurable hardware solution. The purpose of this was to relieve the 

current laptop microprocessor of the task so it would reduce the number of clock cycles 

used and result in lower power consumption by allowing it to be replaced with a less 

powerful and smaller unit.  

I have demonstrated how a simple hand tracking algorithm for this application could be 

implemented using segmentation combined with a statistical filter such as mean, mode, or 

median. The tracker I developed has been integrated into the Tinmith system and is used to 

perform 3D modelling in outdoor environments. The tracker is able to operate well in a 

wide range of environments and with varying lighting conditions, making it ideal for 

outdoor use. 

During the research and development stages I have published a number of fully refereed 

international conference papers contributing to the augmenter reality and user interface 

research areas[33, 34, 44]. 

The contributions I have made can be summarised as the following: 

Chosen suitable vision algorithm 

Used YCrCb colour space 

Implemented a working version of the tracker on the RC200 FPGA Platform. 

Integrated with the Tinmith system 

Improved tracking performance and robustness compared to ARToolkit 
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Developed a low powered stand alone tracking solution 

Performed testing outdoors to find superior colours and measure accuracy of 

operation

Future work to follow on from this research has been considered there are a number of 

extensions that would be useful. Firstly the ability to track more than one object 

simultaneously would allow for interactions to be performed with both hands while using 

the Tinmith system. This could be done by using a different coloured marker on each of the 

user’s thumbs. There are two considerations which also need further research: firstly the 

selection of an appropriate colour which would not interfere with the first marker, and 

secondly the time taken for the additional processing should be performed without slowing 

the current frame rate. Finally, the tracking system developed from this project was 

designed for the Tinmith backpack but is not limited to only being used here the tracker has 

no dependencies with Tinmith and could be used for any application where it is appropriate 

the track an object optically by attaching a coloured marker. Since development, there has 

been some interest in using the tracker in conjunction with another researcher who proposed 

using it to locate bushfires from an unmanned aerial vehicle. 
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8 Appendix 1 
Final Handel-C source code with provisional structure designed for multi object tracking. 
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